
Simplus Quick Guide
V. 0.9

a simple C++ library for discrete event-driven simulations

Simplus Quick Guide p. 1 10/4/09



Content
 1 Overview..........................................................................................................................................3
 2 Installation........................................................................................................................................4
 3 Basic Concepts.................................................................................................................................5

Modeling..........................................................................................................................................5
 3.1 Building and Running...............................................................................................................6
 3.2 Debugging.................................................................................................................................8
 3.3 Summary...................................................................................................................................9

 4 Advanced Techniques....................................................................................................................10
 4.1 Custom messages....................................................................................................................10
 4.2 Groups.....................................................................................................................................10
 4.3 Connectors..............................................................................................................................10
 4.4 The configuration database.....................................................................................................12
 4.5 Probes......................................................................................................................................12

 4.5.1 The SimProbe classes......................................................................................................12
 4.5.2 The Probe subsystem......................................................................................................13

 4.6 Dynamic Processes.................................................................................................................14
 4.7 Tools.......................................................................................................................................14

 4.7.1 The FIFO.........................................................................................................................14
 4.7.2 The Alarmclock...............................................................................................................15
 4.7.3 Random Generator..........................................................................................................15

 5 Customizing....................................................................................................................................16
 5.1 Overview.................................................................................................................................16
 5.2 User provided Main Routine...................................................................................................16
 5.3 Custom Debugger...................................................................................................................16

Simplus Quick Guide p. 2 10/4/09



 1 Overview
Simplus is a simple C++ library for implementing object oriented, discrete event driven simulations. 
Main development goals are ease of use, high performance and high portability. Use cases include 
the simulation of telecommunication or software systems, traffic scenarios, social simulations and 
more.

Rather than trying to provide a full-blown simulator, the focus is more to provide a portable, general 
purpose framework to build more sophisticated simulators or simulation based games.

It  provides  an  abstraction  for  processes,  a  virtual  time  and  some  functionality  used  in  typical 
simulations. A command line parser allows easy script controlled execution of simulations. A build- 
in simple debugger allows tracking of events and more.

Simplus is a standard C++ library, no hacks, no preprocessor magic, no dependencies to external 
libraries or tools. It can be used with any recent compiler and any IDE. It has a good performance 
and a low memory footprint.

Simplus is usable and quite stable. The low version number has basically two reasons:

• it still lacks some features.

• so far, it has been tested with various versions of the Gnu C++ tool chain, on Linux and 
Windows XP (using the Cygwin environment) and partially with Microsoft Visual C++

• the API may change in future versions

This  guide  explains  briefly  the  use  of  Simplus  by  means  of  a  simple  example.  Additional 
information is available in the html based reference guide in doc/html/index.html and by looking 
into the examples.

simplus is published under GNU Lesser General Public license, please read the file Copying.txt.

Comments, feature requests and bug reports are highly welcome.

Hans-Peter Huth, hapehu@users.sourceforge.net

Simplus Quick Guide p. 3 10/4/09



 2 Installation
Prerequisites for installing and building of the library are a recent C++ compiler and either an IDE 
or  the  make  utility.  For  creating  the  API  reference,  doxygen  is  required   (see 
http://www.stack.nl/~dimitri/doxygen/, and optional graphviz from http://www.graphviz.org/). The 
source distribution however already includes a pre-build documentation, see docu/index.html.

Simplus is distributed in source, as a compressed tar archive. If not already done, unpack it into an 
arbitrary directory. If the “make” tool is available (e.g. on Linux or Windows/Cygwin), just type 
make in  the  top level  directory.  It  should compile  without  warnings.  The  compiler  creates  the 
library simplib.a which later on can be linked against your simulations.

Building simplus with a IDE is also possible. The following applies to Microsoft Visual C++ (but 
may work similar in other IDEs):

● create a new “Project from existing code”

● choose the src and incl directories as source to import (do not choose the example or 
the test directories!)

● choose “static library (LIB) project” as project type

● eventually add the incl directory to the list of include directories

● build

Now you can start to develop your code which then is linked against the simplus library.

Directories  incl and  src hold the  simplus sources. Directory  docs contains this text and an API 
reference in html. The directory test contains unit tests.

A bunch of examples is in directory example. All files referenced in this tutorial are also located 
there.

Simplus is still under development and new versions may have API changes. To port code from 
older versions, see the Changelog and Readme.txt for hints to do this.

The source directory contains a Makefile which can be customized e.g. by adding compiler options, 
see inline documentations.

Simplus Quick Guide p. 4 10/4/09



 3 Basic Concepts
Central concept in Simplus is a processes communication using so-called 'events'. Events are time-
dependent, that is, they will be delivered at a certain virtual time. Virtual time - further on simply 
called time - is the simulation time. This can be used to implement time dependent state machines. 
There are two types of events, signals and messages. A signal is an event which holds just a simple 
integer, a message is an event which may transport any user defined structures.

Note,  all  classes  and global  functions  needed  for  normal  use  are  in  the  namespace  simpl.  All 
internal  things use the  namespace SimKern,  you will only need it if  you intend to enhance the 
library itself.

Modeling

As an example, let's assume we have a process A sending signals to process B. A signal shall take 
t1 seconds until it reaches B. A will repeat sending in intervals of ti seconds. In Simplus, both A and 
B will be instances of classes derived from the class process. When sending events, a delivery time 
must be specified. The scheduler of the library takes care of proper in-time delivery of messages. To 
be able to receive events special call-back methods must be implemented. A process is a normal 
class which is called by the library using those signal handlers.

The source of this example is example/tutorial_1.cc. The process B is modeled using class Receiver 
which inherits from process:

1. class Receiver : public process
2. {
3.   public:
4. void Handle_Signal( process* src, int signal ) {
5. cout << sim_time() << endl;
6. }
7. };

Important is the method Handle_Signal(). It is one of two possible methods for receiving events and 
is  called  by the  scheduler.  It  receives  the  content  of  the  event,  which  is  always  an  integer  in 
Handle_Signal(), and a pointer to the sender of the event. Both values are ignored in this example. 

The sender of the message, process A looks like:
1. class Sender : public process
2. {
3.   public:
4. Receiver* receiver; // holds address of the receiving process
5.     double t1; // the message delay
6.     double ti; // interval
7.     
8. void Handle_Signal( process* src, int sig ) {
9. if ( sig ) // count-down to zero
10. sim_wait( ti, --sig );
11.
12. // send message to B
13. sim_signal( receiver, t1 );
14. }
15. };

We have  also  have  a  Handle_Signal() here.  Basically  A sends  an  event  to  itself  to  be  called 
periodically. This is done using the sim_wait() method in line 10. It holds the time for delivering the 
event and the message itself. We decrement the message before sending and check this in line 9 to 
avoid an infinite simulation. Line 13 the actually sends the message to process B using t1 as a delay. 
Because we send an integer, we must use sim_signal() to send the event.

Simplus Quick Guide p. 5 10/4/09



No all we need is a main program to create instances and to start things.

1. int sim_main( int argc, char** argv )
2. {
3. Sender* A = new Sender(); // message source
4.
5. A->receiver = new Receiver(); // the receiver
6. A->t1 = 1; // one second message delay
7. A->ti = 0.5; // two messages per second
8.
9. // start A at time=0 with initial value 10
10. sim_signal( A, 0, 10 );
11.
12. // here we go, start the simulation
13. sim_schedule();
14.
15. return 0;
16. }

First important thing to note is, instead of using the standard main(), a sim_main() is used. This is 
because the library initializes itself before we can use it1. Second important thing is, you need some 
initial event to start the simulation. In this case it is a sgnal send in line 10. Next, sim_schedule() 
starts the message scheduler and the simulation runs until you press Control-C or until there are no 
more events in the system. The sequence chart below illustrates what's going on.

 3.1 Building and Running

You  have  to  compile  the  simulation  and  link  it  against  the  simplus library.  For  the  example 
tutorial_1.cc this can be done e.g. from command line ("$>" is the prompt):

$>c++ tutorial_1.cc -I../incl ../simplib.a -o tutorial_1

The example directory contains a Makefile, so you can as well type
$>make tutorial_1

1 This behavior can be changed at build time. See ch. 4.8

Simplus Quick Guide p. 6 10/4/09

Receiver

sim_wait(0.5,9)
sim_signal(1,0)

sim_wait(0.5,8)
sim_signal(1,0)

sim_signal(1,0)

sim_main

sim_wait(0.5,7)

Sender

t = 0.0

t = 0.5

t = 1.0



The compiler now creates the executable simulation, tutorial_1 in this example. Simplest way to run 
this is to type:

$>tutorial_1
 ----- SIMPL++ Version 0.7 Nov 19 2005 12:57:47 (c) by HPH -----
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
$>

from command line. It starts, shows the library version and then runs the simulation. The output 
here shows the times when B got a message. By default a simulation runs until it is interrupted (by 
pressing control C), until it is terminated explicitly from the program logic or until there's no further 
event to process. Using Control-C is a safe operation, it will close all files. In the example above 
there's no new event after the 11th message, so the program terminates automatically.

However simplus provides several command line options to control the execution. There is a brief 
online help by adding "-h" as an option:

$>tutorial_1 -h
Simplus 0.91 (c) by HPH 

<simulation name> [-optionen] [- args] 
-cf <file> read configuration from <file> 
-d debug mode 
-l <logfile> set verbose output and use <logfile> for it. 

Use "-l stderr" to redirect to stderr. 
-stat <t> [sec|min|h] print statistics every <time> seconds or minutes or 
hours. 
-stop_time <t> stop simulation after <t> seconds. 
-seed <s> initizialise random generator with <s> 
-q quit mode - surpress startup message 
-v verbose 
-h this help message. 
Everything after an '-' will be given to the simp_main().
$>

Important options are the stop_time which forces termination at specified time, e.g.:
$>tutorial_1 -stop_time 2
 ----- SIMPL++ Version 0.7 Nov 19 2005 12:57:47 (c) by HPH -----
1
1.5
2
 -----  Simulation Terminated
 -----  Sim-Time: 2.5
 -----  -----  -----  -----
$>

A nice thing for longer simulation runs is the stat option. It will print the simulation time in the 
specified interval:

Simplus Quick Guide p. 7 10/4/09



$>tutorial_1 -stop_time 2 -stat 2
 ----- SIMPL++ Version 0.7 Nov 19 2005 12:57:47 (c) by HPH -----
1
1.5
 ----- Time 2 sec -----
2
 -----  Simulation Terminated
 -----  Sim-Time: 2.5
 -----  -----  -----  -----
$>

Note: the stat option works by using an internal process which sends messages to itself (similar to 
process A in our example).  So the automatic  termination we used does not work and we must 
terminate the simulation explicitly.

Another important command line option is the "seed" option. If not given (or set to 0), simplus will 
initialize the C random generator with the current time. Thus each start will create a new sequence 
of random numbers. Using the seed option, you can enforce a certain initialization. Restarting an 
executable with the same seed will therefor create exactly the same sequence of random numbers.  

 3.2 Debugging

Using source level debuggers with simplus is possible, but it is difficult to follow the program logic. 
The simplus library however has some basic debugging support build-in.

One feature to use here is the verbose mode enabled by "-v".  It prints many messages tracking all 
events. For example the first events look like:

$>tutorial_1 -v
 ----- SIMPL++ Version 0.7 Nov 19 2005 12:57:47 (c) by HPH -----
 ----- Running Simulation for 3.40282e+38 sec -----
 ----- New Process (2)  -----
 ----- New Process (3)  -----
 ----- New Process SimKernNull(4)  -----
 ----- Creating Event(1), scheduled time = 0, for Process (2) , source Process 
SimKernNull(0) , Value= Int: 10
Starting Simulation
*****  Delivering  Event(1),  scheduled  time  =  0,  for  Process  (2)  ,  source 
Process SimKernNull(0) , Value= Int: 10 *****
 ----- Creating Event(2), scheduled time = 0.5, for Process (2) , source 
Process (2) , Value= Int: 9
 ----- Creating Event(3), scheduled time = 1, for Process (3) , source Process 
(2) , Value= Int: 0

We see, three process are created. Process 2 and 3 are our Sender and Receiver, the third one is a 
library internal process. Internal process can be recognized by a name starting with "SimKern". 
Next, a event is created targeted at process 2 (which is our sender)  which shall be delivered at time 
0 with a value of 10. This corresponds to the sim_signal( A, 0, 10 ) statement from the sim_main() 
routine. Next, the simulation is started (from sim_schedule()), and the first event is delivered. The 
verbose output is sometimes useful, but tends to get to large in complex simulations. Using the 
command line option “-l <logfile>, it can be redirected to some file.

As a better method, simplus provides a simple debug mode which allows to trace messages and 
internal states and allows you to set breakpoints to events, messages or processes. It is enabled from 
command line using the "-d" option:

$>tutorial_1 -d
 ----- SIMPL++ Version 0.7 Nov 19 2005 12:57:47 (c) by HPH -----
 ----- Running Simulation for 3.40282e+38 sec -----
 ----- New Process (2)  -----
 ----- New Process (3)  -----
 ----- New Process SimKernNull(4)  -----

Simplus Quick Guide p. 8 10/4/09



 ----- Creating Event(1), scheduled time = 0, for Process (2) , source Process 
SimKernNull(0) , Value= Int: 10
Starting Simulation
1>

As we can see, it looks like the verbose mode, but after the start it stops in a prompt. Type "?" to get 
an online help. The following listing is an example on how to use this feature.

$>tutorial_1 -d
 ----- SIMPL++ Version 0.7 Nov 19 2005 12:57:47 (c) by HPH -----
 ----- Running Simulation for 3.40282e+38 sec -----
 ----- New Process (2)  -----
 ----- New Process (3)  -----
 ----- New Process SimKernNull(4)  -----
 ----- Creating Event(1), scheduled time = 0, for Process (2) , source Process 
SimKernNull(0) , Value= Int: 10
Starting Simulation
1> st 1
 ----- Creating Event(2), scheduled time = 1, for Process SimTStop(1) with 
aktive breakpoint( 1), source Process SimKernNull(0) , Value= Com: END
2> c
*****  Delivering  Event(1),  scheduled  time  =  0,  for  Process  (2)  ,  source 
Process SimKernNull(0) , Value= Int: 10 *****
 ----- Creating Event(3), scheduled time = 0.5, for Process (2) , source 
Process (2) , Value= Int: 9
 ----- Creating Event(4), scheduled time = 1, for Process (3) , source Process 
(2) , Value= Int: 0
***** Delivering Event(3), scheduled time = 0.5, for Process (2) , source 
Process (2) , Value= Int: 9 *****
 ----- Creating Event(5), scheduled time = 1, for Process (2) , source Process 
(2) , Value= Int: 8
 ----- Creating Event(6), scheduled time = 1.5, for Process (3) , source 
Process (2) , Value= Int: 0
***** Delivering Event(2), scheduled time = 1, for Process SimTStop(1) with 
aktive breakpoint( 1), source Process SimKernNull(0) , Value= Com: END   *****
Process Breakpoint reached.
current time 1  Process SimTStop(1)
 Breakpoint reached.
2> te
3 pending events.
Event(4), scheduled time = 1, for Process (3) , source Process (2) , Value= 
Int: 0
Event(5), scheduled time = 1, for Process (2) , source Process (2) , Value= 
Int: 8
Event(6), scheduled time = 1.5, for Process (3) , source Process (2) , Value= 
Int: 0
3> tp
Process SimTStop(1)
Process SimKernNull(0)
Process (2)
Process (3)
4> q
Quit Simulation? (y/n)y
 ----- Simulation Ended with Code 0 at 1 sec. -----
$>

You  can  include  logging  statements  in  your  code  by  means  of  the  logger  facility  defined  in 
logger.h. It gives you special streams which can be used like cout but will be enabled or disabled 
according to the flags from the program startup.

There's also a method Info() in the process class. Overwrite it with your debugging code, it can be 
called from the debugger console using the “info process” command ip <process id>

 3.3 Summary

Identify active functions and actors of your system. Model them by means of a class which inherits 

Simplus Quick Guide p. 9 10/4/09



from class process. Use messages with time stamps to activate processes.

Simplus Quick Guide p. 10 10/4/09



 4 Advanced Techniques

 4.1 Custom messages

Often the content of a message is not important or a simple integer is sufficient. For this  special 
case,  simplus  calls  sending  integers  "signal".  These  are  the  sim_signal()  and  Handle_Signal() 
methods. Signals are easy to use and have a good performance.

If the message should contain more information, you can use what is called "Message" in simplus. 
The message  class  includes  a  instance  variable  of type  message_content  which can be used to 
define custom classes encapsulating your information of arbitrary type. Sending of messages uses 
the  send_message() family  of  functions  and  methods,  reception  of  messages  requires  the 
Handle_Message() method of a process. There's is no automatic memory management, you must 
explicitly delete both message and message_content at appropriate places. You should overwrite the 
destructor. You also have to define the Copy() method which is called when the library has to copy 
messages internally, for example if you use groups.

As an example, we extend the tutorial_1.cc by sending text notes between A and B. For the full 
source see tutorial_2.cc .

 4.2 Groups

Sending of events to many recipients can be done using a loop and an array holding the recipients. 
A slightly more efficient and more convenient method is to use the class process_group to do the 
job. Basically an instance of process_group is a process which will be addressed instead of the true 
receivers. It will then copy and forward the event to its members. When copying the event, the 
Copy() method of the user specified content (derived from class message_content) will be called. It 
is safe to change the members of a process_group while events to that group are delivered, however 
the change will be applied only in the next time step and performance of removing processes from a 
group is poor (O(N) complexity).

The behavior of group mechanism is configurable:

• filter events: if the source of an event is in the group, the filter_self() method can be used to 
specify whether the event should be delivered to the source as well or not.

• shuffle recipients: normally, each time events are delivered the list of recipients is traversed 
in the same order. The method  shuffle() can enable a shuffling of the list before sending. 
This results in a nicer, more random behavior, however is time consuming.

Example tutorial_3.cc extends the tutorial_2.cc by sending a message to many recipients.

 4.3 Connectors

If in our examples the receiving process terminates, process A will still happily send messages. This 
may result in crashing the program - or even worse - the simulation continuous to run but with 
wrong results. Another interesting situation occurs if another process - lets call it C - should replace 
the original receiver, but without telling the sender.

Connectors solve those problems. They are much like cables: send something into a cable without 
knowing who receives it at the other end. You can plug cables into a receiver and a sender. You can 
unplug a cable without harming the other end, and re-plug it again. Technically, it is a combination 
of a moderator pattern with a reference counter and an observer. Performance of the  connector 
method is the about the same as the  sim_signal() or  sim_message() family at the cost of slightly 
higher memory consumption. Connectors however are much saver to use, so it recommended to use 

Simplus Quick Guide p. 11 10/4/09



them where ever possible. In the current version, connectors are always a 1:1 association, they can 
not be used with process groups.

To illustrate how to use it, see example 4,  ring.cc which connects three processes to form a ring 
(fig. 4.1).

First  we define  a  class  Connected_process which  includes  a  "plug" for  sending (of  type  class 
transmitter) and one for receiving (of class receiver). The transmitter - instance variable line_out - 
is the end of a connector used to send messages or signals. Sending a signal or a message is done by 
the send() method of a transmitter.

The receiver - variable line_in - associates a connector with a process for receiving. Events a will 
still be caught by Handle_Message() respective Handle_Signal() in the receiving process.

Forming the ring is done by connecting a transceiver to a receiver. In the example this looks like:
        Connected_process* p1 = new Connected_process("A");
        Connected_process* p2 = new Connected_process("B");
        Connected_process* p3 = new Connected_process("C");

        // make a ring
        p1->line_out.connect( p2, p2->line_in );
        p2->line_out.connect( p3, p3->line_in );
        p3->line_out.connect( p1, p1->line_in );

Deleting a receiver will reroute all events of the connector to a default sink. Deleting a transmitter 
won't affect the  connector (there might still be old events on the fly). However connectors have 
smart pointer-like automatic memory management, that is, if neither receiver or transmitter is alive 
and if there are no more events or signals to deliver, the connector will be released automatically.

In some cases you may want to exchange events between two processes. In this case you could use 
two connectors, on for each direction. That's exactly what the class transceiver does: a bidirectional 
connector. A transceiver is a combination of a receiver and a transmitter. It has all advantages of 
the  unidirectional  connectors,  but  is  slightly  simpler  to  handle  than  two  connectors.  See 
transceiverdemo.cc as an example on how to use it.

Simplus Quick Guide p. 12 10/4/09

fig. 4.1: ring of processes

A

C

B

fig. 4.2: simplified UML class diagram of the ring example



 4.4 The configuration database

It is possible to write a configuration file for running simulations with varying parameters. In the 
code you can then access the parameters from a simple database API, the class SimConfDB.

The configuration file format is simple:

• lines starting with '#' are comments

• all other lines must contain a pair of <key> <value> strings. Empty lines are allowed.

• key/value pairs are either separated by spaces or by a “=”. In the later case the value may 
contain spaces as well.

The two functions  setFromConfDB() and  getFromConfDB() or the Find() method can be used to 
look up the configuration data base.

The file confdb.cc in the examples directory illustrates the use. To read it, start the simulation with 
the command line option "-cf <configfile>, in this example try confdb -cf conf.db

 4.5 Probes

When running simulations, gathering statistics is an important job. In simplus, the so-called probes 
are used to gather the requested informations. The probe subsystem is build around a decorator 
pattern  for maximum flexibility  and extensibility.  For  simplicity  and easier  adaptation  of older 
code, the SimProbe and SimProbeQuick classes are provided (which are also an example of  how to 
use the probe subsystem to define custom probes).

 4.5.1 The SimProbe classes

There are two types of probes:

• quick probes will calculate  basic statistics like minimum, average,  maximum on the fly. 
They do not write to a file and thus are very fast. They use the class SimProbeQuick.

• normal probes do not calculate any numbers, they just produce log files which then can be 
post  processed,  e.g.  to produce curves.  Use the class  SimProbe for  them.  Configuration 
includes the file name, formats or with/without timestamp.

Both types can use data of type double. They provide behaviors when multiple values should be 
handled for the same time. Consider for example two processes producing two values (e.g. 2 and 4) 
at the same simulation time. Or consider a buffer having 5 elements at time t0. Assume a process 
taking one element from this buffer at time t1 while at the same time another processes puts an 
element on the buffer. When plotting the buffer size, which value to take? 5 or 6? Normal logging 
would write both values to the log file. The simplus probes can be configured to either process all 
values using the SetAll() method or to just take the last value. Default behavior is to use all values.

Default behavior of a probe is to do nothing, so you can include it in your classes with (almost) no 
performance decrease. There are two ways to enable probes:

• explicitly switch them on in the simulation using the On() method.

• enter the probe name in a configuration file. The value in the conf. file will be used as a file 
name for logging the probe or it will be ignored for Quick Probes.

A probe must have a name which identifies it in a configuration file. 

Example tutorial_4.cc extends the tutorial_1.cc using probes. When started without parameters it 
will output nothing. Starting it with "tutorial_4 -cf tutorial_4.cfg" will read the configuration and 
the probes are switched on as configured.

Simplus Quick Guide p. 13 10/4/09



 4.5.2 The Probe subsystem

The basic idea here is to construct custom probes by means of the class  Probe template which 
contains a chain of filters an an output object.  A value which should be probed must be added 
(method Add()) to the probe object which will forward the value to the filters and eventually to the 
output object.  The filter  may alter,  delay or delete the value. The output object may do a final 
formating and then outputs the value, e.g. to a file or GUI.

File msgtest.cc in the example directory demonstrates its use. The probe system is build around a 
decorator pattern which allows easy customization. For detailed documentation see the generated 
reference.

The main classes used here are:

● class Probe: an adapter which can be integrated into the simulation modules. 

● class ProbeFilter, the abstract base class of filters.

● class ProbeDecorator, the base class of the filter decorators. There are already a number of 
predefined decorators:

● ProbeFilterCompress which will only forward the first of potentionally many equal 
values

● ProbeLogger which makes the probing verbose for debugging and testing

● ProbeFilterOnePerTime only forwards the last of  potentionally many values which 
are added at the same time

● class  ProbeBackend,  the base class  of  concrete  filters  to  do the  real  output.  Predefined 
classes are:

● ProbeFileBackend  is  yet  another  abstract  class.  It  can  be  used  as  a  parent  for 
deriving  probes  which  use  a  file  as  output  media.  The  file  histogram.cc in  the 
examples illustrates its use.

● ProbeOutputFile which logs all values to a file. It uses a template-based strategy 
pattern which allows to specify a formating functionality and to add pre/post ambles, 
i.e.  to  write  the  values  in  a  special  way.  As  an  example,  the  class 
ProbeFormatterWithTime is provided. It writes a time/value pair.

● ProbeQuick calculates minimum, average, maximum, and sum on the fly.

● struct ProbeValue is the interface between Probe() and the filters.

Note, class Probe does not delete filters automatically. This allows it to use the same filter in many 
probes.

Simplus Quick Guide p. 14 10/4/09



 4.6 Dynamic Processes

In  simplus,  a  process  can  be  created  dynamically  and  can  be  "killed"  at  any  time.  Example 
simtest.cc illustrates this. Creating a process is as simple. Derive your custom process class from 
class process, then use the new operator to create an instance or simply declare a member variable 
of that  type in another class. The latter  method however may cause troubles if the surrounding 
object gets deleted, also if it is at a global scope. Thus, using operator new for process creation is 
recommended.

Terminating a process has some pitfalls. It is possible to use the delete operator for processes, but 
the recommended method is calling sim_terminate() to kill a process. The sim_terminate() function 
guarantees that a process is deleted after all other events scheduled for the same time have been 
delivered.  Consider  for  example  a  process  C which receives  a  message  at  time T1.  If  another 
process "deletes" C at time T1, the order of those two actions can not easily be predicted. Using 
sim_terminate() to terminate C will result in delivering the message first, and then the process is 
deleted.

It is save to kill a non-existing process with sim_terminate(), i.e. because it has been deleted before.

In some cases you want to avoid that a process can be terminated by sim_terminate(). To do so, the 
method process::Make_deletable() sets a flag which is honored by sim_terminate() which does not 
terminate those processes.

 4.7 Tools

 4.7.1 The FIFO

A frequently used object in simulations is a first-in first-out buffer. class FIFO encapsulates a list 
with  first-in  first-out  behaviour  and  provides  additional  features  such  as  built-in  probes.  The 
program msgtest.cc from the examples shows how to use a fifo.

Simplus Quick Guide p. 15 10/4/09

Fig. 4.3: probe class diagram



 4.7.2 The Alarmclock

In many cases it is useful to implement a watchdog which triggers a call back function or functor at 
a  specified  time.  Class  alarmclock can  be  used  for  this  purpose.  It  has  a  constant  time  for 
cancellation of pending events. See examples alarm.cc or alarmdemo.cc.

 4.7.3 Random Generation

Unlike other simulation frameworks, simplus does not include its own random generators. There are 
several sophisticated random libraries out there, i.e. the boost library. However, simplus has simple 
wrapper functions around the standard rand() function which may be useful in some cases. See the 
simplrand.h file for more.

Note,  the  library  will  initialize  the  C  random  generator  via  srand()  upon  startup,  this  can  be 
controlled from the command line (see ch.  3.1 ).

Simplus Quick Guide p. 16 10/4/09

http://www.boost.org/doc/libs/1_40_0/libs/random/index.html


 5 Customizing

 5.1 Overview

To embed  simplus into a larger project,  you may wish to change several aspects  of the default 
behavior. For example if you want to develop a graphical user interface for your simulator, it is 
possible completely avoid console I/O by specifying your own front-ends for probe output (see 
 4.5.2 ) or for the debugger.

 5.2 User provided Main Routine

As we have seen before, simplus provides its own main() routine called sim_main(). If you want to 
use it as a framework for your own simulator or if you want to use other components which re-write 
the main routine (i.e. unit test frameworks), you can change this behavior at build time. Remove 
(comment) the SIM_MAIN macro in  simconfig.h, so its NOT defined. Rebuild the whole library 
(use 'make lib'). In your code (i.e. in your main() routine), you now have to initialize the simulation 
kernel explicitly by calling sim_init(argc,argv). Set argc and argv to the number of command line 
options and the options. After your simulation has completed, call the sim_shutdown() routine to 
clean up the simulation. See also the simtest_main.cc and runagain.cc in the example directory.

 5.3 Custom Debugger

The default  debugger  uses  a  console  for its  user  interface.  It  is  however  possible  to  provide a 
custom user interface thanks to a strategy pattern,  i.e.  to create a graphical interface.  To do so, 
derive  from  class  SimDebuggerStrategy and  tell  simplus to  use  it  by  calling  SimDebugger().  
setStrategy( &YourDebuggerStrategy ). See test/debugtest.cc for an example.

Simplus Quick Guide p. 17 10/4/09


	 1  Overview
	 2  Installation
	 3  Basic Concepts
	Modeling
	 3.1  Building and Running
	 3.2  Debugging
	 3.3  Summary

	 4  Advanced Techniques
	 4.1  Custom messages
	 4.2  Groups
	 4.3  Connectors
	 4.4  The configuration database
	 4.5  Probes
	 4.5.1  The SimProbe classes
	 4.5.2  The Probe subsystem

	 4.6  Dynamic Processes
	 4.7  Tools
	 4.7.1  The FIFO
	 4.7.2  The Alarmclock
	 4.7.3  Random Generation


	 5  Customizing
	 5.1  Overview
	 5.2  User provided Main Routine
	 5.3  Custom Debugger


